NBA篮球竞猜_NBA赛事竞猜登录『官方网站』

NBA篮球竞猜

全职教师

您现在所在位置: 首页 >> 师资队伍 >> 全职教师 >> 金融学系 >> 正文

 

朱青





所属院系:国际商学院

专业技术职务:副教授

学  位:博士

通讯地址:NBA篮球竞猜长安区文澜楼1607

邮        箱:zhuqing@snnu.edu.cn


 1983年5月生,陕西西安人,无党派人士,欧美同学会成员

  1.教育背景

2001-2005  软件工程,学士,西安电子科技大学

2005-2007  社会与经济学,Maîtrese (旧)研究生初级学位,法国让莫奈圣安蒂安大学

2007-2008  管理科学,Master 商学硕士,法国孟德斯鸠波尔多第四大学

2008-2011  管理科学与工程,PhD 商学博士,法国孟德斯鸠波尔多第四大学

2.职业经历

2011-2015  NBA篮球竞猜,教师,讲师,硕士生导师

2012-2015  产业经济学,PhD 经济学博士,西安交通大学

2015-      NBA篮球竞猜,教师,副教授,硕士生导师

2016-2018  大数据应用研究,Post-Doctor 博士后,西安交通大学

2017-2017  挂职陕西广播电视台音乐广播、青春广播新媒体总监

3.社会(学术)兼职

2015.8.19 当选中国优选法统筹法与经济数学研究会青年工作委员会委员

2018.6.19 受聘于陕西西咸新区西部云谷创新创业发展中心政府专家顾问

2018.7.10 受聘于延长石油资产投资公司企业咨询顾问

2018.6    管理评论审稿人

2018.10   International Journal of internet and Enterprise Management审稿人


   复杂系统、消费者感知系统、人工神经网络复杂计算

     1. 课题

1. 国家自然科学基金委委主任基金项目,71350007,信息消费去顶下的面向对象市场营销模式创新及激励政策研究,2014/01-2016/01,15万,已结题,主持。


2. 关天资本投资横向企业委托项目,201709CX01,基于Text Mining的量化策略探索研究,2017/8-2020/8,180万,在研,主持。


3. 榆林市科技局产学研合作项目,CXY12-2-10,大数据信息融合下的煤炭市场预测系统开发, 2014/01-2016/01, 20万,已结题,主持。


4. 陕西省科技厅13115科技创新工程重大科技专项项目,2013(2)KC001,BIG DATA大数据平台建设,2013/10-2016/10,100万,已结题,主持。


5. 科技部国家软科学研究计划重大项目,2012GXS2D027,CPI主要构成商品价格预期发现与政府调控对策研究,2013/01-2014/01,20万,已结题,首席。


6. 陕西省土地平整中心企业委托项目,SXDC201208,毛乌素沙漠综合开发可行性、危害性及地表地下开发控制系统研究,2012/11-2014/11,240万,已结题,主持。


7. 陕西省科技厅软科学计划项目,2011KRM108,消费者价格感知模型及在政府管制中的应用研究,2012/01-2014/01,10万,已结题,主持。


8. 陕西省科技厅软科学计划项目,不确定多目标均衡优化理论及在矿产管理中的应用,2016/04-2017/04,5万,在研,参与(3/4)。


9. 国家自然科学基金青年基金项目,随机型多目标双层均衡供应链决策模型与算法研究,2015/01-2018/01,21万,在研,参与(2/6)。


10. 国家自然科学基金青年基金项目,基于协同行为的高校创新团队选择机理与模式研究,2015/01-2018/01,22万,在研,参与(3/7)。


11. 陕西省科技厅软科学研究项目,陕西省节能减排的政策效应分析及实现途径研究,2013/01-2014/01,2万,已结题,参与(2/5)

2.论文

[1] Zhu,Q*., Wu, Y.Q., Wang, L., & Liu S.(2019). A Financial Time Series One-day-ahead Prediction Approach with LSTM Fed Reconstructed Data, Knowledge-Based Systems, 2019, In press (In Press)

[2] Zhu, Q., Zuo, R., LI, Y., & Liu S. (2019). A System Evaluation of NBA Rookie Contract Execution Efficiency with Stacked Autoencoder and Hybrid DEA, Annals Of Operations Research, 2019, In press. (In Press)

[3] Zhu, Q., Zhang, F., LI, Y., & Liu S. (2019). A hybrid VMD-BiGRU model for rubber futures time series forecasting, Applied Soft Computing, 2019, In press. (In Press)

[4] Zhu Q., Wu Y., Zhang F., and Wang L., Using Unlabeled Data Mining to detect Customer Perceptions of Undefined Commodity Problems, International Journal of Services Technology and Management, 2019, In press (In Press)

[5] Zhu, Q., Li , J., Zuo, R., & Guo, Z., New Weather Indices for China: Based on DCC-GARCH and GRU Models, International Journal of Services Technology and Management., International Journal of Services Technology and Management. 2019, In press (In Press)

[6] Zhu, Q*., Wu, Y.Q., Li, Y., & Zuo, R. X. (2018). A Text Mining Based Approach for Mining Customer Attribute Data on Undefined Quality Problem, The 17th Wuhan International Conference on E-Business, China Wuhan, May 2018. Page 276-289. (Published)

[7] Zhu, Q*., Wang, T., Wu, Y., & Chai, J. (2018). A Hybrid Model to Analyze Air Pollution Spread Scales in Xi' an and Surrounding Cities. The 17th Wuhan International Conference on E-Business, China Wuhan, May 2018. Page 155-164. (Published)

[8] Zhu, Q*., Li, J. R., & Chai, J. (2018). New Weather Indices for China: tool of risk control of international supply chain. The 17th Wuhan International Conference on E-Business, China Wuhan, May 2018. Page 9-21. (Published) (Best Paper Award)

[9] Zhu, Q*., Ding, L., & Wu, Y. (2018). What trend the natural gas pricing mechanism reform is in China: An perspective of dependency between China and the U.S. natural gas markets. International Journal of Internet and Enterprise Management, 2018, In press. (In Press)

[10] Zhang, Y., Liu, S., Tan, J., Jiang, G., & Zhu, Q. (2018). Effects of risks on the performance of business process outsourcing projects: the moderating roles of knowledge management capabilities. International Journal of Project Management, 36(4), 627-639. (Published)

[11] Zhu, Q., Wu, Y., Li, Y., Han, J., & Zhou, X*. (2018). Text mining based theme logic structure identification: application in library journals. Library Hi Tech, Vol. 36 Issue: 3, pp.411-425. DOI: 10.1108/LHT-10-2017-0211. (Published)  (SSCI Certitude)

[12] Zhu, Q*., Wu, Y., Li, Y., & Pan B. (2018). An exploration of sharing economy segment market structure: a case study of Airbnb. International Journal of Internet and Enterprise Management, 2019, In press. (In Press)

[13] Zhu, Q*., Wei, K., Ding, L., & Lai, K. K. (2018) Count judgment decision support system based on text-mining and machine learning. Chinese Journal of Management Science, 2018,(2017-9-10), 2018(1), 53-58. (Published)

[14] Zhang, X., Liu, S., Chen, X., Wang, L., Gao, B., & Zhu, Q. (2017). Health information privacy concerns, antecedents, and information disclosure intention in online health communities. Information & Management. DOI: /10.1016/j.im.2017.11.003. (Published)

[15] Zhu, Q*., Wei, K., Ding, L., & Lai, K. K. (2017). Court Judgment Decision Support System Based on Medical Text Mining. The 16th Wuhan International Conference on E-Business, China Wuhan, Jun 2017, Page 610-620. (Published)

[16] Liu, K., Yen, J., Yen, J., & Zhu, Q*. (2015). A model of stock manipulation ramping tricks. Computational Economics, 45(1), 135-150. DOI : 10.1007/S1061401394129. (Published)

[17] Jian, C., Ying, Y., Zhu, Q., Quan-Ying, L. U., School, I. B., & University, S. N. (2015). The imperfect price-reversibility of transportation demand. Systems Engineering-Theory & Practice, 35(7), 1800-1807. (Published)

[18] Q. Y., L. U., Chai, J., Zhu, Q., Xing, L. M., Deng, J. L., & School, I. B., et al. (2015). Analysis and forecast for natural gas consumption demand. Chinese Journal of Management Science, 2015, (2015-1-10), 2015(11), 823-829. (Published)

[19] Song, L., Guo, Y., Zhu, Q., & Chai, J. (2015). The zero growth of chinese electricity consumption and its prediction. Journal of Beijing Institute of Technology, 2015, (2015-2-3), 2015(2), 12-19. (Published)

[20] Zhu, Q., Zhang, Z., Li, R., Lai, K. K., Wang, S., & Chai, J*. (2014). Structural analysis and total coal demand forecast in china. Discrete Dynamics in Nature and Society,2014,(2014-6-5), 2014(1), 1-10. DOI: 10.1155/2014/612064. (Published)

[21] Zhu, Q., Lu, Q. Y., Zhou, X. Y., & Lai, K. K*. (2014). A driving force analysis and forecast for gas consumption demand in china. Mathematical Problems in Engineering,2014,(2014-5-7), 2014(1), 1-11. DOI: 10.1155/2014/980410. (Published) (ESI 1%)

[22] Zhu, Q., He, K., Zou, Y., & Lai, K. K*. (2014). Day-ahead crude oil price forecasting using a novel morphological component analysis based model. Scientific world journal, 2014(3), 341734. DOI:10.1155/2014/341734. (Published)

[23] Zhu, Q., Zhang, Z., Chai, J., & Wang S*. (2014). Coal demand forecast based on consumption structure partition. System Engineering, 2014,(2014-12-28), 2014(12), 112-123. (Published)

[24] Liu, K., Lai, K. K., Yen, J., & Zhu, Q. (2014). Model of bias-driven trend followers and interaction with manipulators. International Journal of Information Technology & Decision Making(2), 1-18. DOI: 10.1142/S0219622014500485. (Published)

[25] Cheng, X., & Zhu, Q*. (2014). Prepayment Risk of Personal Housing Mortgage Loans Research: The Case of Xi'an, a Commercial Bank. Seventh International Joint Conference on Computational Sciences and Optimization (pp.450-454). IEEE. (Published)

[26] Zhou, X. Y., Xu, J. P., & Zhu, Q. (2014). A class of linear multi-objective decision making model based on level-2 tfnwtfc coefficients and its application to supplier selection. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22(03), 339-366. DOI: 142/S0218488514500172. (Published)

[27] Li, H., Zhu, Q*., Zhou, X., & Han, J. (2014). Dynamic Pricing of Duopoly through Pricing Game Based on Price Discrimination. Seventh International Joint Conference on Computational Sciences and Optimization (pp.621-625). IEEE. (Published)

[28] Zheng, W., Bai, M., Zhu, Q*., & Chai, J. (2014). A Lagging Dynamic Analysis of Factors Affecting Coal Consumption. Sixth International Conference on Business Intelligence and Financial Engineering (pp.495-499). IEEE. (Published)

[29] Lu, Q., Zhang, Z., Chai, J., Zhu, Q., & Chai, J. (2014). The Analysis of the Market of Coal Consumption in Shaanxi Province Based on the BVAR Model. Sixth International Conference on Business Intelligence and Financial Engineering (pp.490-494). IEEE. (Published)

[30] Yang, Y., Chai, J., Zhu, Q*., & Lu, Q. (2014). Imperfect Price-Reversibility of Passenger Transportation Demand in China. Seventh International Joint Conference on Computational Sciences and Optimization (pp.131-134). IEEE. (Published)

[31] Wei, B., Chai, J., Zhu, Q*., & Zhang, Z. (2014). A Cost Analysis for Chinese Aviation. International Joint Conference on Computational Sciences & Optimization (pp.59-63). IEEE. (Published)

[32] Chai, J., Zhu, Q., Zhang, Z. Y., Xiao, H., & Wang, S. Y*. (2014). Identification and analysis of the breaking point of oil price. China Population Resources & Environment, 24(1), 109-117. (Published)

[33] Zhang, Z., Chai, J*., & Zhu, Q. (2014). Coal Demand Forecast Based on Consumption Structure Partition. Sixth International Conference on Business Intelligence and Financial Engineering (Vol.18, pp.485-489). IEEE. (Published)

[34] Zhu, Q*., Guo, Y., Wang, S., & Feng, G. (2012). Household Energy Demand Evolutionary Trace: What Happened to the Fringe of Xi'an City?. Fifth International Conference on Business Intelligence and Financial Engineering (Vol.3, pp.470-475). IEEE. (Published)

[35] Zhu, Q*., Guo, Y., & Feng, G. (2012). Household Energy Consumption in China: Forecasting with BVAR Model Up to 2015. Fifth International Joint Conference on Computational Sciences and Optimization (pp.654-659). IEEE. (Published) (Best Paper Award)